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ABSTRACT

We present herein a new approach to the Continuum hypothesis CH. We will employ a string conditioning,
a technique that limits the range of a string over some of its sub-domains for forming subsets K of R. We
will prove that these are well defined and in fact proper subsets of R by making use of Cantor’s Diagonal
argument in its original form to establish the cardinality of K between that of (N,R) respectively.
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1 PREFACE

The continuum hypothesis (CH) is one of and if not the most important open problems in
set theory, one that is important for both mathematical and philosophical reasons.

Philosophically and perhaps practically, mathematicians are divided on the matter of a
resolution to CH. The uncanny persistence of the problem has led to several mainstream
views surrounding its resolution. Discussions on the possibility of a resolution, notably
one from the Institute of Advanced study at Princeton gives a vast account of the thoughts
on the problem and a detailed summary of the progress made this far, along with what may
constitute a solution see [1]. Most similar discussions express the current main sequence
thoughts on the matter, and the division that exists amongst mathematicians in the views
they hold with regard to a resolution, the nature of the resolution and what a resolution to
CH may mean. Some of the mainstream views can be summarized as follows: Finitist-
mathematicians believe that we only ever deal with the finite and as such and simply put,
we can’t really say much about the infinite. Pluralists naturally believe in the plurality of
things, that any one of the outcomes of CH is possible. Though the efforts of both Cohen
and Godel showed the consistency of ZFC + /CH and ZFC + CH respectively, Cohen held
a strong pluralist view that his demonstration that CH cannot be decided from ZFC alone,
essentially resolved the matter. For Cohen’s independence results, See [2]. Contrary to
this however, Godel believed that a well justified extension to ZFC was all that was neces-
sary in the way of deciding CH. Godels program seemingly the promising option forward
aims to find an extension of ZFC axioms capable of deciding CH. Godels Program: De-
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cide mathematically interesting questions independent of ZFC in well justified extensions of ZFC.
Godel himself proposed the large cardinal axioms as a candidate.

Shortly thereafter however, this extension still proved to be insufficient for the task of
deciding CH, as was demonstrated by the results of Levy and Solovay. The forcing tech-
niques employed by Cohen have since paved the way toward establishing many consis-
tency results such as the insufficiency of the large cardinal extension of ZFC in the way of
deciding CH, also by Levy and Solovay. See [3]. This however, was the starting point for
the work of W.H. Woodin demonstrating, (on the premise of large cardinals), the effective
failure of CH via use of a canonical model in which CH fails [4]. It is well known that
forcing cannot be used to decide CH, and for this primary reason, we explore here some
new ideas outside of the scope of forcing.

We must admit that these Ideas arose from Bit Conditioning, a form of conditioning digits
available to bit strings.

2 INTRODUCTION

Let us pause at this juncture to take account of the intent behind the next few paragraphs,
which is firstly to formulate a language capable of dealing with forming well defined sub-

sets of F := U fi oo —{0,1}, (0 is to mean a finite set of ordinals/ordered-numbers),
Vi
by restricting the range of the functions f; to 0 over arbitrary domain values of f; in

dom(f;) = w- :={0,1,2,..,n}. Such functions ultimately constitute elements of the sets
we are interested in. Trivial but important to note is that, set of all sequences of length n
having ’conditioned segments’ is an example of a subset of F. Secondly, we aim to for-
mulate a means of establishing cardinality of such conditioned sequence sets, now however
of non-finite length, with that of SEQ :=| J f; : N — {0,1} as a whole.

Vi
To achieve this result, we will make use of inductive arguments.

The fuzziness in the first point is best made clear with an example. Suppose we wished to
form a finite set of elements of the form

{120005,340004,710004, ...}, here suggestive that each element is a 6-digit-sequence{0, ..,5} —
{0,..,9} with s, to s4 included, being always 0. Such sequences are a subset of say all se-
quences of length 6.

A simplistic language, in the mathematical sense, capable of forming precisely such con-
ditioned sequence sets will be valuable for establishing cardinality.

Returning to point two, the core diagonal argument works when one can show that for
each element in some set S, there are infinitely many more in say R, by the argument
Diag(S,R;) (N,,Ry, naturals and reals in base two). A subtle nuance is that N, — S does
not need to be onto for the Diag argument to work. As trivial as this sounds, this is impor-
tant, for it tells us that if we are to search for a set S that exists cardinally between Nj, R,
we can be certain that S C R, and need not be onto N, for the Diag argument to work.

If we consider the nature of how the diagonal argument is conventionally used, one ob-
serves that R is treated as comprising of all infinite sequences of the form N — {0,1}. In
fact, every element of R is representable as some infinite binary sequence R,. This almost

32



Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.10, No.1/2, June 2023

begs the question, can one form subsets of SEQ?

With some imagination, a few ideas come to mind, along the lines of those described
at the beginning of this section. Perhaps by restricting Range values of f; to 0 over seg-
ments of its domain. Surely, all elements of the form S := (JM;0M,00M3000M40000... with
M;:={fi:{0,..,e} = {0,1}|e € N}, forms a subset of SEQ.

This is interesting, as what then is the cardinality of S with regards to N, R respectively?
What of the diagonal argument can we augment and or reuse to felicitate this comparison?
These are some of the questions that we aim to answer in this letter for consideration by
the experts.

Important point for consideration is the containment of S strictly outside of N,Q, but
we will get to this later.

With our conditioned sets S, as we term temporarily, we wish to achieve the following:
Diag(N,,S) and Diag(S,R,), using Diag in short-form to depict Cantor’s diagonal argu-
ment between the sets within brackets (Such as for the well established one between
Diag(N,R)). One would then have to make a case for using the diagonal argument inter-
changeably in the following sentences (Why this is so will become clear later on, and is
the main focus of this article).

A) Given 0,1,2,....,12,...,1000, .., (i.e., all naturals) there are infinitely many more Reals
B) Given some arbitrary collection ey, ...., ey, .... C R there are infinitely many more Reals

C) Given some arbitrary collection 1,2,....,12,...,1000, .., (i.e., all naturals), there are in-
finitely many more ey, ....,e,,.... €S CR

All of which should be establish-able via Diag(N,S) and Diag(S,R).
The challenge would then be to pick such a collection, i.e. one possessing the charac-

teristics necessary to enable Diag(N,S) and Diag(S,R).
Fortunately, this can be any collection S.

3 CONCEPTUAL IDEAS AND FORMALIZATION

The aim of this section is to provide some definitions used for forming well defined sub-
sets of U fi t o~ — {0,1} having the properties expressed previously. We want to ulti-

Vi
mately make an inductive argument involving finite sequences that will necessarily have
to extend to infinite ones.

Definition (Sequence-Function)

We define a finite sequence-function to be a function f : w. — {0,1}, having . the or-
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dered set of numbers starting 0, up to some arbitrary n € N,{0,..,n}, as its domain, and
range(f) := {1,0}.

Such functions, and sets thereof, are denoted by the symbols fs, S, S’ respectively through-
out this article unless otherwise specified.

Definition (Sequence-Function Sets)

We define any set of the form S := U fi o — {0,1}, to be a sequence-function set,
Vi
typically denoted S, S'.

Definition (Sum)

Given an arbitrary sequence-function f, the binary operation +4 on f € S, is defined as
f+a f = Bnum™ " (Bnum(f) + Bnum(f)), where Bnum(f) is the function Bnum(f) — b € B
with b being the binary number equivalent of the image of f, B the binary number set
as we have labelled it, {+} being the standard arithmetic addition operation, and Bnum~!
being the function Bnum~'(b € B) — (f) with b being the binary equivalent of the ordered

Image(f).
Remarks

Bnum(f) + Bnum(f) is written A,, and in general A; for many such sums.

As an example: A>(1001) = 10010. It is to be clearly mentioned that the domain of the
function(singular) remains unaffected after Summing which strictly affects the image of f
alone.

Definition (Conditioned sub-sequence)

Given an arbitrary sequence-function f, a segment Ix of the Image( f) over which Range(f) :=
{0}, for two or more domain values, is defined to be a conditioned sub-sequence.

Remarks

These are strictly partial functions fx associated with f. Both have identical domain val-
ues over Ix. D(1;),D(/I;) respectively denote the domain sets associated with these image
intervals. Here the set D(/I;) of domain values, are associated with all domain intervals
not associated with fk.

Definition (Length)

Given an arbitrary sequence-function, a segment-length (just length where there is no
confusion) of a random image segment s := s[nj,nz] € s € S of s, with Dom(sx) = [n1,n2],
the domain interval of the the segment sk, of Image( fi), denoted by .# (sx[n1,n2]), (A (si)
where there is no confusion) is defined to mean |ny —n,| for n; € N.
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Remarks
Where the Length of the entire function is concerned, we simply write .# (f)

To enable the choosing of such elements for § C R, we focus our attention here on se-
quences that are incapable of being reduced to a natural number via finite Sum. This is
tricky, as we will see shortly.

It is a well known fact that certain rational numbers such as 1/3 = 0.3333... are asso-
ciated with fractional portions having sequence-like characteristics, i.e., non terminating
fractionals. So naturally, if we are to talk solely about the irrational-sequences, we need
some means of removing these from the power set 2¥0. Intuitively one way of attempting
this is to have some idea of what may constitute an ’irrational sequence’. It turns out that
binary sequences following a certain schema (SH) belong to a subset SS of the irrational
numbers (Or comparable to.). Numbers such as (Y.11111111...),(¥.333333...) having a
sequence-like fractional portion,i.e., an infinite sequence of numbers, can be transformed
into to a natural number via finite Sum, thus In searching for such a schema, it should be
noted that such periodically repetitive sequences are to be discounted.

Formulation of the schema (SH)(i.e., A generalization of sorts of types of arrangements
of 0's and 1’s possible, forming binary sequences), holds a strong relationship with the
effect addition has on binary numbers. Consider the simple case of 010010 + 010010 =
100100

The alignment of (1) symbols in such summations, when added, results in the position
of (1) shifting a position to the left. 0's in alignment have no bearing on the result aside
from its sum resulting in 0. The formulation of SH thus requires that the binary sequences
associated with irrational-sequences are so arranged, that it is impossible to form, via finite
additions of some s to itself, Aj(s) = X.111.... for j, X € N.

(SH) begs an alternate schema to those that are periodically recursive, such as for instance
:(110001100011000..). Such recursive schemas hold the property that via finite Sum result
in 111111...

As an example: (110001100011000..) 44 ...4+4...+4 (111001110011100..) = (111111111111111..)
It is the above consideration that sparked the idea that targeting the number of 0's between
pairs of 1’s forming a binary sequence is what holds the key to forming (SH) i.e., a schema
not having this property). Noteworthy is the observation that a means of forming a non-
recursive binary sequence is by increasing the number 0's between pairs of 1’s, and as
a natural extension to this is having arbitrary finite-length sequences M; spaced suchlike
forming the sequence.

It is almost arbitrary why such sequences would form part of the irrational sequences, as,
conditioned sub-sequences larger in length so to say, require more Summing in the way
of resulting in 1111.. spanning its length. If there is always in existence one such condi-
tioned sub-sequence greater in length than all preceding conditioned sub-sequences, then
no amount of Sum on such a sequence is sufficient in the way of resulting in 111... .

Definition (Unconditioned sub-sequence)

Given an arbitrary sequence-function f of arbitrary length, an unconditioned sub-sequence
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P, of f, is defined to mean a segment of /mage(f) where Range(f) := {0,1}.
Remarks

A formidable task in set theory is precision in defining sets. Whereof we do not know,
thereof we must remain silent. Present theory struggles in the ability to form precisely a col-
lection of U fi:N— {0, 1}, primarily because it requires the existence of a choice function
and the acceptance of ZFC-axioms of arithmetic. As its existence is highly debated we
need to be precise and relay caution. What we wish to do is condition the functions both
inductively and in a precisely defined manner, allowing for set formation. In order to
achieve this, we will need to make use of these definitions.

Definition (Imposed Sequence Sets)

Let/= UD(Il-) be a union/collection of non-overlapping conditioned sub-sequence domain-
Vi
intervals(intervals) of conditioned sub-sequences, of an arbitrary sequence-function f of

sufficient length. An imposed sequence-function is defined to be any arbitrary sequence-
function f : o — {0, 1} with the conditioning:

o {Range(f) ={0,1}  ifdom(f) € I; € UyD()
Range(f) = {O} if dom(f) €lie UV[D(Ii)ZerofSegments

written f < (I;). Should the entire set S abide by the conditioning, we then write S < (I;)
and S is said to be imposed by I;, so long as there is no confusion in the meaning.
Remarks
We only ever require conditioned sub-sequences to define an imposition, however we do
provide additional information in certain circumstances to effect clarity by including the
non-segment-interval domain values in the arguments that follow.
Definition (Unconditioned sub-sequence Combination C;(g))
The set Ci(g) is defined to be the set of functions Uﬁ :{1,..,g} = {0,1}, g e N.

Vi
Definition (Span Sets, we denote as span(S < (I;,P;)), (Simply span(I;, P;)))
Given an arbitrary sequence-function f of arbitrary length, span(f) for f < (I;, P,) .# (P,), # (I;) #
0Vi, of arbitrary Conditioned and Unconditioned sub-sequences forming f, is defined to
be the set of all functions | J f; + (I;,P)) .

Definition (Sequence-Function Set Product)

Let S,8',U be arbitrary sequence-function sets such that IT:=SUS ' UU, and let Vi, j, f; € S
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and f} € §'. The multiplication of (S,S") is defined to be the binary operation ITx IT— IT:

S8\ J{fi+afi}€U.
Vi,j
Such sets are comparable to a direct product set.
Written S® ', again, where S®S'=U :={fi+a fi, fi+afy - frtafis atafis atafys - fata

fho o fitaflsfitafs, fitafi}
Remarks

A natural implication of span multiplication is a change in the set of conditioned sub-
sequences and unconditioned sub-sequences imposed on the resulting set.

0001011000001010000
0001001000001110000
0001101000001100000
0000011000001010000

Figure 1: The above figure illustrates a series of arbitrary elements belonging to span(S)
where S < (I, P,). Units within the grey area are indicative of the unconditioned sub-
sequences associated with each sequence depicted.

Definition (Set of Irrational Sequences)

Any set SR of all non-duplicate sequence-functions s < (I;, P;) having the property .# (I;) >
A (Ii—1),Yi € N, is defined to be a set of irrational sequences.

Definition (1,, ;,)

Given an arbitrary sequence-function f € S, 1,,,, is defined to be an unconditioned-
segment of f, P(f)[q1,11], with 1’s spanning its length.

Lemma 0

Vs € SR, no j € N exists such that A;(s) = 111....

proof

Let I, [q1,11],14,[g2,12] be arbitrary consecutive conditioned sub-sequences of s € SR, if
A;(S) results in P [q1,11] = 14,4, then Ag(S)|g > j is required in order for P, [g2,1] to re-

sult in 1,,,,. Since the chosen conditioned sub-sequences in concern are arbitrary, for
infinite sequence-functions imposed in this manner, no finite set of Sums exists such that
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Ag(S)=11111....

We can be certain that any sequence following an irrational progression will not be re-
ducible to 0.1111. , and this is the exact property we require to keep such sequences from
exhibiting properties of Q when unrestricted in length, in a manner of speaking.

Definition (Conditioned sub-sequence Removed Sequence Set)

Given an arbitrary sequence-function s € S of some sequence-function set S having condi-
tioned sub-sequences and unconditioned sub-sequences (I;, P;)|Vi respectively. The sequence-
function s’ having the ordered arrangement of P;|Vi as its image is defined to be a condi-

tioned sub-sequence removed sequence-function.

The set of all such sequence-functions of S is defined to be the conditioned sub-sequence
removed sequence set associated with S, written S ;.

A
0001011000001010000.

O
0101010111010100010
A

Figure 2: Conditioned sub-sequence Removed sequences.

Definition (Half Paired Elements)

Given an arbitrary sequence function s < (1;,P;). The resulting function formed by con-
ditioning the first half of each unconditioned sub-sequence P;|Vi of s with a conditioned
sub-sequence (sub-sequence conditioning) of length .# (P,)(Mody)2, is defined to be a half
paired function element /s of s.

Definition (Half Conditioned sub-sequence Extended Sequence Set)

A half conditioned sub-sequence extended sequence set is defined to be the set /S of
all non-duplicate half-paired function elements associated with a set S of sequences.
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A
000101000000100..

000001000000000..
/A

Figure 3: Conditioned sub-sequence Extended sequences.

4 THE THEORY

We will devote the second part of this article toward establishing the cardinality of Sy
with respect to N and R respectively. We will achieve this by forming a ratio of the form:
()] : [(R)] as |(N)| : |(H)|, with H C Sg C R and for H C Sg, |(H)| : |(R)] as |(N)] : [(R)].
(Sg here refers to the collection of all Irrational-Sequences of indefinite length). The dif-
ficulty in establishing this result surrounds H being a subset of Sg and as such any attempt
at pairing elements of H with those of R becomes challenging for obvious reasons. We
will however formulate a means of overcoming this challenge by implementing a tech-
nique of pairing and shrinking via denotation, that which is in one-to-one correspondence
with the sequence set H. Finally we will argue that R has a cardinally larger spanning-set
than H by demonstrating that the unpaired remainder K C Sk is such that any attempt at
pairing elements of K — R respectively is much the same as attempting the pairing (N, R).

Before continuing, we prove the following important lemma.

Lemma 1.0

If a sequence-function s is formed having an image mapped to the diagonal values d
of a set of sequence-functions s;....s, € D < (I;, P;), then s + (I;, P;) and as such constitutes
an element of D.

Proof

Any conditioned sub-sequence of length &k, makes use of k elements and thus k-diagonal
entries in the way of producing a sequence of length k. For any such set of conditioned
sub-sequences in alignment, the result is clearly a conditioned sub-sequence of same
length, and the same is thus true of any arbitrary series of unconditioned sub-sequences
in alignment as well.
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1111000001 /

Figure 4: Diagonal argument as applied to induced sets.

5 MAIN ARGUMENT

Let all s € SR be such that s < (1;, ), where Vi, # (I;11) = # (I;)+ 1. Vi, and .# (P,) = g|lg €
2njn € N. Let I/ ,Piz be the conditioned Hs and unconditioned sub-sequences respectively
of all sequences s’ € §' belonging to s’ € hs(SR) = span(I/,P?). Let in addition .# (P!) +
M (P?) =g, with .7 (P?) = § , then

SR = span(I;, P!) @ span(1;, P}) (1)

Rewriting elements of (T'y := span(I;, P!), T := span(I/, P?)) as «; € T'y, & € T respectively,
we can see from (2) that SR :=I'; ® span(1;, P!).
Now, if we try and pair {{_Jo;} with {{ Ja} @ span(I},P?) := {U o} ® {Ua }, we note

Vi vi
that the elements of both sequence-sets in one-to-one correspondence have already been

shrunk (To shrink via denotation is to mean the re-representation of a sub-sequence via the
use of a variable.), any attempt at pairing U o; with span(I!,P?) and Ua,-, is the same as
Vi Vi

attempting to pair elements of (N, R) respectively. This can be seen if one uses span(I!, P?)
in the diagonal argument instead of R and takes into account Lemma 1.0 in the following
way:

For any arbitrary set of paired-elements (a; : o), (0 : &), ..., (@, : o), attempting the
mapping of elements of sy,s,,... € span(I!,P?) alongside such a pairing, having in mind
that Uai — U o; 1s obviously onto, quickly shows that one can easily find an unpaired

Vi Vi
element s; € span(I/, P?) by employing the diagonal argument using sy, s2, ... € span(I/, P?).

oy : (04,100100101111...),
o : (t2,001010100001...),

ceey
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o : (0,,010101011110...)
(Example) An attempt at pairing I'j — SR.

000010101000000010101000 Sz
000000010000000000011000 /15 (5%

000000011000000000011000 P~
000010100000000011100000 P

Figure 5: Elements and Half Paired Elements.

6 CONCLUSION

As o is arbitrary, the previous arguments made, can be applied inductively for all w;.
The results as such, follow in general as outlined in the introduction to the previous sec-
tion.

One can apply the diagonal argument involving (N,,SR). Since SR C R; as already es-
tablished. This is all that needs proving in the way of establishing the cardinality of SR
between that of (N, R;)
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