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ABSTRACT 
 

This study presents the solutions on the oscillator’s propagator in two-dimensional homogeneous electric 

field within the framework of white noise functional approach, by calculating the propagator, and 

extracting the eigenstates and eigenfunctions of the system. From the obtained propagator, wave functions 

and energy spectrum were extracted. Two-dimensional harmonic oscillator is given an external potential, 

subject to a two-dimensional electric field. The system is first solved by completing the square, which 

reduces the Hamiltonian from quadratic plus linear term to just quadratic and linear term. Wavefunctions 

and energy spectra of the perturbed harmonic oscillators were extracted. Wavefunctions and probability 

densities were obtained in the ground and first two excited states. It was shown that the electric field’s 

influence on the harmonic oscillator simply translates the positions and the corresponding oscillator 
energies is being reduced. 
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1. INTRODUCTION 
 
Quantum mechanics gives a range of probabilities for where a particle might be rather than 

precise values for the position or momentum of a specific particle in a given region during a 

given period. Additionally, it discussed wave-particle duality, which states that the characteristics 

of a particle can be stated as a wave. As a result, one can think of its quantum state as a wave, and 
wave functions can change over time. Thus, the measuring process, which is among the most 

challenging components of understanding quantum systems, is where the probabilistic nature of 

quantum mechanics originates. 
 

By creating a path integral formulation in 1948, Feynman integrated an approach to figuring out a 

particle’s ultimate states in a quantum system [1]. This integral approach includes for all 

conceivable system histories between the beginning and end states. Calculating the propagator, 
which is represented mathematically as follows, 

 

   (𝐾𝑥1, 𝑥2; 𝑡2) =  𝒩 ∫𝑒𝑥𝑝 (
𝑖

ℏ
) 𝑆[𝑥]𝐷[𝑥]    (1) 

 

is a popular use of the integral where the normalization factor is given by N. The propagator 

which is an analytical tool determines the probability that a particle will move from one place to 

another in a given amount of time or with a given quantity of energy and momentum. 
 

https://airccse.com/ijmas/vol4.html
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The quantum mechanical harmonic oscillator is fundamental in many fields of physics, serving as 
a model for a wider range of systems, including electrodynamical field modes, molecular and 

solid vibration systems. This study aims to use white noise functional approach to solve the 

propagator of a perturbed harmonic oscillator subject to a homogeneous electric field, 

V(x,y)=qE(x,y). Some applications of the white noise path integral approach to physical and 
quantum mechanical systems are reported here [2-6]. 

 

2. MATHEMATICAL PRELIMINARIES 
 
This section presents the mathematical formulation in solving the perturbed quantum harmonic 

oscillator in the framework of white noise analysis. 

 

2.1. The Feynman Path Integral 
 

Hamiltonian’s principle of least action states that motion of an object will definitely follow a path 
of least action and is represented by 

 

    𝑆 =  ∫ 𝐿(𝑥, �̇�)𝑑𝜏
𝑡2

𝑡1
     (2) 

 

Feynman recommended that the propagator in Equation (1) is interpreted as the sum of all 
particle’s feasible paths from x1 and x2 where D[x] is the infinite-dimensional Lebesgue measure. 

 

In its symmetric form, the propagator can be written in terms of the wave functions Ψ𝑛 and 

energy spectrum 𝐸𝑛 in this form  
 

    𝐾(𝑥1, 𝑥2; 𝑡2) =  ∑ 𝜑𝑛(𝑟2)𝜑𝑛
∗

𝑛 (𝑟1)𝑒
−𝑖(𝑡′′−𝑡′)𝐸𝑛/ℏ.  (3) 

 

The Lagrangian, denoted by the term L in Equation (2) is defined as follows: 

    𝐿 = 
1

2
𝑚𝑥2̇ − 𝑉(𝑥).     (4) 

 

Within the framework of white noise analysis, the paths are parameterized through white noise 

variables, 

    𝑥(𝜏) = 𝑦(𝜏) + (
ℏ

𝑚
)

1

2
𝐵(𝜏).    (5) 

 

And the Feynman propagator in Equation (3) becomes 

    𝐾(𝑥1, 𝑥2; 𝑡2) = 𝑬{𝐼0𝑒𝑥𝑝 [
𝑖

ℏ
𝑆(𝑥)]}    (6) 

 
where 

    𝐼0 = 𝒩𝑒𝑥𝑝 [(
𝑖+1

2
)∫ 𝜔(𝑡)2𝑑𝜏

𝑡

0
].    (7) 

 

2.2. Characteristic Functional 
 

Characteristic Functional is the Fourier transform of the Gaussian measure𝑑𝜇(𝜔) and is given by 

    𝐶(𝜉) =  ʃE∗𝑒𝑖<𝜔,𝜉>𝑑𝜇(𝜔) =  𝑒
−

1

2
|𝜉|2

0, ξ 𝜖 𝐸.   (8) 
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2.3. The S- and T- transforms 
 

For a white noise functional spectrum, denoted by 𝜑(𝜔), its S-Transform and T-Transform [7], 

can be written as  

    (𝑆𝜑)(𝜉) = 𝐶(𝜉) ∫ 𝜑(𝜔)𝑒〈𝜔,𝜉〉𝑑𝜇(𝜔),   (9) 

and 

   (𝑇𝜑): 𝜉 휀 𝑆 → (𝑇𝜑) (𝜉)  = ∫ 𝜑(𝜔)𝑒𝑖〈𝜔,𝜉〉𝑑𝜇(𝜔)
𝑠

0∗    (10) 

 

respectively, where the Gaussian measure 𝑑𝜇(𝜔) is in charge of the fall-off. Moreover, S-
Transform is also related to T-Transform in this manner, 

 

    (𝑆𝜑) (𝜉)  =  𝐶 (𝜉) (𝑇𝜑) (−𝑖𝜉),    (11) 
 

and 
    (𝑇𝜑) (𝜉)  =  𝐶 (𝜉) (𝑆𝜑) (𝑖𝜉).    (12) 

 

2.4. Donsker Delta Function 
 

The function𝛿(𝐵(𝑡) − 𝑦), is known as the Donsker delta, which often materializes in calculating 
for the propagator, and it can alternatively be written as Fourier representation given by 

    𝛿(𝐵(𝑡) − 𝑦) =  
1

2𝜋
∫exp [𝑖𝜆(〈𝜔, 𝑥[0,𝑡]〉 − 𝑦)]𝑑𝜆.  (13) 

 

2.5. The Wave function of Quantum Harmonic Oscillator in a Homogeneous 

Electric field 
 

The wave function equation for the quantum harmonic oscillator in a homogeneous electric field 
as the perturbing potential [8] is given by 

 𝜑𝑛(𝑥) = (2𝑛𝑛!√𝜋)
−

1

2𝐻𝑛 [𝛽 (𝑥 −
𝑞𝐸

𝑚𝛺2
)]exp (−

𝛽2

2
(𝑥 −

𝑞𝐸

𝑚𝛺2
)

2

) =
(2𝑛𝑛!√𝜋)

−
1

2

𝐻𝑛 

 [√
𝑚𝛺

ħ
(𝑥 −

𝑞𝐸

𝑚𝛺2)]  x exp [−
𝑚𝛺

2ħ
(𝑥 −

𝑞𝐸

𝑚𝛺2)
2].     (14) 

 

The schematic flow of solving the propagator of quantum harmonic oscillator subject to a 

homogeneous two-dimensional electric field within the framework of white noise functional 
approach is shown in Figure 1. 
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Figure 1. Schematic diagram for obtaining the propagator of a quantum harmonic oscillator subject to a 

perturbing potential. 

 

3. RESULTS AND DISCUSSIONS 

 

This white noise functional approach in solving the perturbed quantum harmonic oscillator is 

presented in this section. Methods on calculating wavefunction, energy spectrum and 

wavefunction probability density for coupled harmonic oscillators in a two-dimensional electric 
field are presented. 

 

3.1. Calculation of Quantum Harmonic Oscillator’s Propagator in Two-Dimensions 
 

The Lagrangian for two-dimensional harmonic oscillators in an electric field is given by 

  𝐿(𝑥𝑦, �̇��̇�) =
1

2
𝑚(�̇�2 + �̇�2) −

1

2
𝑚Ω2(𝑥2 + 𝑦2) + 𝑞𝐸(𝑥, 𝑦)   (15) 

where  

    𝑉1(𝑥, 𝑦) =
1

2
𝑚Ω2(𝑥2 + 𝑦2)    (16) 

 

is the harmonic potential, Ω is the angular frequency and the potential due to a two-dimensional 

electric field is given by 

    𝑉2(𝑥, 𝑦) = 𝑞𝐸(𝑥, 𝑦).     (17) 
 

Parameterizing the path �⃑�(𝜏) by considering Brownian 𝐵(𝜏) fluctuations about a sure path �⃑⃑�(𝜏) 

led to the construction of the Feynman propagator of the form 

 𝐾(0,𝑋2; 𝑡1) = 𝑬{
𝑁𝑒𝑥𝑝 [

(𝑖+1)

2
〈𝜔,𝜔〉 −

𝑖

ħ
〈𝜔, 𝑆′′𝜔〉 +

𝑖

ħ

𝑞2𝐸2

2𝑚Ω2
]

× 𝛿 (𝐵(𝜏) − (
𝑚

ħ
)
1/2

𝑋2)
}   (18) 

 
where the first term takes into account the relation between flat measure and Gaussian measure. 

The second term is due to harmonic oscillator’s potential while the third is due to the uniform 

electric field potential perturbation. Moreover, applying the S- and T- transforms yields the 

Feynman propagator equation 
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 𝐾(0, 𝑥2, 𝑡2) = 𝑇𝐼(𝜉) =  (
𝑚Ω1,2

2𝜋𝑖ħ𝑠𝑖𝑛Ω1,2𝑡
)
1/2

𝑒𝑥𝑝 (
𝑖

ħ

𝑞2𝐸2

2𝑚Ω2 𝑡 +
𝑖𝑚Ω1,2𝑋2

2

4ħ𝑡𝑎𝑛Ω1,2𝑡
)   (19) 

   𝐾(0, 𝑥2, 𝑡2) =
𝑚

2𝜋𝑖ħ
(

Ω1Ω2

𝑠𝑖𝑛Ω1𝑡𝑠𝑖𝑛Ω2𝑡
)
1/2

𝑒𝑥𝑝 {(
𝑖

ħ

𝑞2𝐸2

2𝑚Ω2 𝑡) + [
𝑖𝑚Ω1

4ħ𝑠𝑖𝑛Ω1𝑡
𝑐𝑜𝑠Ω1𝑡 (𝑥2 −

𝑞𝐸

𝑚Ω2
)

2

]} 

× 𝑒𝑥𝑝 {
𝑖𝑚Ω2

4ħ𝑠𝑖𝑛Ω2𝑡
[𝑐𝑜𝑠Ω2𝑡 (𝑥2 +

𝑞𝐸

𝑚Ω2
)

2

]} .     (20) 

 

3.2. Energy Spectrum and Wavefunctions of Two-Dimensional Harmonic 

Oscillators 
 
Expanding the obtained propagator in terms of its eigenvalues and eigenfunctions gives 

  𝐾(0, 𝑥2, 𝑡2) = ∑ 𝑒−(
𝑖

ħ
)𝐸𝑛1,𝑛2𝑡

𝑛1,𝑛2∈𝑁 𝜑𝑛1,𝑛2(0)𝜑𝑛
∗(𝑋1, 𝑋2)   (21) 

 

for an initial point 𝑋2 = 𝑋1 = 0. Using the relations 𝑖𝑠𝑖𝑛Ω𝑡 =
1

2
𝑒𝑖Ω𝑡(1 − 𝑒−2𝑖Ω𝑡)and 𝑐𝑜𝑠Ω𝑡 =

1

2
𝑒𝑖Ω𝑡(1 + 𝑒−2𝑖Ω𝑡), one can write the LHS of Equation (20) as 

(
𝑚Ω

𝜋ħ
)

1

2
𝑒−(

𝑖Ω𝑡

2
)(1 − 𝑒−2𝑖Ω𝑡)−

1

2𝑒𝑥𝑝 (
𝑖

ħ

𝑞2𝐸2

2𝑚Ω2 𝑡) 𝑒𝑥𝑝 [−
𝑚Ω

2ħ
𝑋2

2 (1+𝑒−2𝑖Ω𝑡)

(1−𝑒−2𝑖Ω𝑡)
]                                         (22) 

 

where 𝑋2 = 𝑥2 −
𝑞𝐸

𝑚Ω2. To rewrite the propagator in its symmetric form, we use the Mehler’s 

formula given by 

1

√1−𝑍2
𝑒𝑥𝑝 [

4𝑥𝑦𝑧−(𝑥2+𝑦2)(1−𝑧2)

2(1+𝑧2)
] = 𝑒−

(𝑥2+𝑦2)

2 ∑
1

𝑛!
(

𝑧

2
)

𝑛

𝐻𝑛
∞
𝑛=0 (𝑥)𝐻𝑛(𝑦)                                          (23) 

where functions 𝐻𝑛 are the Hermite polynomials. Thus, the symmetric form of the propagator 

results to symmetric form of the propagator results to 
 

𝐾(0,𝑋2, 𝑡2) =
𝑚

𝜋ħ
[

Ω1Ω2

𝑒𝑖𝑡(Ω1+Ω2)
]

1

2

𝑒
(−

𝑖Ω𝑡

2ħ
)
𝑒

(
𝑖

ħ

𝑞2𝐸2

2𝑚Ω2𝑡)
× 𝑒𝑥𝑝

[
 
 
 
 
 
 −

𝑚Ω1

4ħ
(𝑥 −

𝑞𝐸

𝑚Ω2
)

2

∑
1

𝑛1!

∞

𝑛1=0

(
𝑒−𝑖Ω1𝑡

2
)

𝑛1

𝐻𝑛1

[√
𝑚Ω1

2ħ
(𝑥 −

𝑞𝐸

𝑚Ω2
)]

]
 
 
 
 
 
 

 

× 𝑒𝑥𝑝

[
 
 
 −

𝑚Ω2

4ħ
(𝑦 +

𝑞𝐸

𝑚Ω2
)

2
∑

1

𝑛2!
∞
𝑛2=0 (

𝑒−𝑖Ω2𝑡

2
)

𝑛2

𝐻𝑛2

[√
𝑚Ω2

2ħ
(𝑦 +

𝑞𝐸

𝑚Ω2
)]

]
 
 
 

      (24) 

𝐾(0, 𝑋2, 𝑡2) =
𝑚

𝜋ħ
(Ω1Ω2)

1

2𝑒𝑥𝑝 {−
𝑚

4ħ
[Ω1 (𝑥 −

𝑞𝐸

𝑚Ω2
)

2

+ Ω2 (𝑦 +
𝑞𝐸

𝑚Ω2
)

2

]} 

× ∑ (2𝑛1𝑛1!)

𝑛1,𝑛2∈𝑁

−1

(2𝑛2𝑛2!)
−1𝑒𝑥𝑝 {−𝑖𝑡 [

1

2
(Ω1 + Ω2) + 𝑛1Ω1 + 𝑛2Ω2 − (

𝑞2𝐸2

2𝑚Ω2
)]} 

× 𝐻𝑛1
[√

𝑚Ω1

2ħ
(𝑥 −

𝑞𝐸

𝑚Ω2
)]𝐻𝑛2

[√
𝑚Ω2

2ħ
(𝑦 +

𝑞𝐸

𝑚Ω2
)].     (25) 

 
One can immediately extract the energy spectrum, given by 

 𝐸𝑛1,𝑛2
= ħ [(

1

2
+ 𝑛1)Ω1 + (

1

2
+ 𝑛2)Ω2] −

𝑞2𝐸2

2𝑚Ω2.  (26) 

 

 
And the general formula for the wavefunctions of quadratic harmonic oscillator subject to a 

perturbing potential, i.e., homogeneous electric field is of the form 

𝜑𝑛1,𝑛2
= √ 𝑚√Ω1Ω2

2(𝑛1+𝑛2)ℏ𝜋𝑛1!𝑛2! 𝑒𝑥𝑝 {−
𝑚

4ħ
[Ω1 (𝑥 −

𝑞𝐸

𝑚Ω2
)

2

+ Ω2 (𝑦 +
𝑞𝐸

𝑚Ω2
)

2

]}.  (27) 
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Thus, we have solved the K-propagator of two-dimensional oscillator in a homogeneous electric 
field using the white noise functional integral formulation. We have obtained the wavefunctions 

and energy spectra and have shown that the energy spectra are just the sum of the energies of two 

harmonic oscillators plus the energy due to the electric field where the system is subjected to. In 

addition, the quantum state of two-dimensional harmonic oscillators is described completely by 
its wavefunctions. These results agree with the works in [9-10]. Here, it was shown that the 

mathematically well-established approach, the white noise analysis approach can be utilized in 

solving the problem of perturbed quantum harmonic oscillator. 
 

3.3. Plots of Oscillator’s Wavefunctions and Probability Densities 

 
3.3.1. Ground State 

 

In terms of equivalent Hermite polynomial for 𝑛1 = 𝑛2 = 0, the respective wavefunction of two-

dimensional perturbed quantum harmonic oscillator for the ground state is of the form 

 Ψ0,0 = √
𝑚√Ω1Ω2

4𝜋ℏ
𝑒𝑥𝑝 {−

𝑚

4ℏ
[Ω1 (𝑥 − 

𝑞𝐸

𝑚Ω2
)

2

+ Ω2 (𝑦 + 
𝑞𝐸

𝑚Ω2
)

2

]}.  (28) 

 
The ground state wavefunction and the probability density plots are shown in Figure 2 and Figure 

3, respectively. 

 
 

Figure 2. Ground state wavefunction, Ψ0,0. 
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Figure 3. Ground State Wavefunction Probability Density, |Ψ0,0|
2
, 𝑃0,0 = ⟨Ψ0,0|Ψ0,0⟩. 

 

3.3.2. First Excited State 

 

The corresponding wavefunction for the first excited state n1 = n2 = 1, is of the form 

  Ψ1,1 = √
𝑚√Ω1Ω2

4𝜋ℏ
𝑒𝑥𝑝 {−

𝑚

4ℏ
[Ω1 (𝑥 − 

𝑞𝐸

𝑚Ω2
)

2

+ Ω2 (𝑦 + 
𝑞𝐸

𝑚Ω2
)

2

]} 

   [
√𝑚Ω1

2ℏ
(𝑥 − 

𝑞𝐸

𝑚Ω2
)] × [

√𝑚Ω1

2ℏ
(𝑦 + 

𝑞𝐸

𝑚Ω2
)].          (29) 

 

Figure 4 and Figure 5 show the wavefunction and the corresponding probability density for the 

first excited state, respectively. 

 

 
 

Figure 4. First excited state wavefunction, Ψ1,1. 
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Figure 5. First Excited State Wavefunction Probability Density, |Ψ1,1|
2
, 𝑃1,1 = ⟨Ψ1,1|Ψ1,1⟩. 

 

3.3.3. Second Excited State 

 

At the second excited state, i.e., n1 = n2 =2, the corresponding wavefunction is of the form 
 

Ψ2,2 = √
𝑚√Ω1Ω2

64𝜋ℏ
𝑒𝑥𝑝 {−

𝑚

4ℏ
[Ω1 (𝑥 − 

𝑞𝐸

𝑚Ω2
)
2

+ Ω2 (𝑦 + 
𝑞𝐸

𝑚Ω2
)
2

]} 

   × [2(
√𝑚Ω1

2ℏ
(𝑥 − 

𝑞𝐸

𝑚Ω2
))

2

− 2] × [2 (
√𝑚Ω1

2ℏ
(𝑥 − 

𝑞𝐸

𝑚Ω2
))

2

− 2]. (30) 

 
Figure 6 and Figure 7 show the plot of the wavefunction and its probability density for the second 

excited state, respectively. 

 
Figure 6. Second excited state wvefunction, Ψ2,2. 
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Figure 7. Second Excited Stae Waefunction Probability Density, |Ψ2,2|
2
, 𝑃2,2 = ⟨Ψ2,2|Ψ2,2⟩. 

 

The obtained wavefunctions from this study are in agreement to the basic quantum mechanics 
where the oscillator is made to propagate along a two-dimensional space with the enclosed of the 

two-dimensional perturbing potential. The wavefunction amplitude as can be seen in the Figures 

2-8 has different peaks that corresponds to the quantization of the open quantum system, 

including the two-dimensional electric field, the system’s trajectory was shifted as expected from 
the previous assumption. 

 

4. CONCLUSIONS 
 
Using a white noise functional technique, we are able to determine the propagator of two-

dimensional harmonic oscillators in a two-dimensional electric field in this study. Having the 

propagator solved, we extracted wavefunctions and energy spectrum for the system. And through 

equivalent Hermite polynomials, we obtained a simplified wavefunctions and probability 
densities of the harmonic oscillators for the first three quantum states. It can be noticed that the 

electric field’s potential perturbation to the wavefunctions shifted the positions x into 𝑥 −
𝑞𝐸

𝑚Ω1
2and 

y into 𝑦 +
𝑞𝐸

𝑚Ω2
2. In addition, the energy spectrum obtained reduced the simple harmonic oscillator 

energies by a quantity
𝑞2𝐸2

𝑚Ω2 . It has been shown that the white noise functional approach can be 

applied to quantum mechanical problems or systems such as the harmonic oscillator in a 

homogeneous electric field, coupled harmonic oscillators and others. 
 

ACKNOWLEDGEMENTS 
 
SAMS wishes to thank the DOST-SEI for the scholarship grant. Likewise, the support extended 

by Prof. Norodin A. Rangaig and MSU-Marawi Physics Department is acknowledged. 

 

 

 

 

 
 

0

20

40

60

80

0

20

40

60
0

0.2

0.4

0.6

0.8

1

(x-qE)/hbar

Second Excited State Wavefunction Probability Density

(y+qE)/hbar

P
ro

ba
bi

lit
y 

D
en

si
ty

 



International Journal of Modelling, Simulation and Applications (IJMSA) Vol.4, No.1 

10 

REFERENCES 
 
[1] Feynman, R & Hibbs, A, (1965) Quantum Mechanics and Path Integrals, McGraw-Hill, New York. 

[2] Streit, L & Hida, T, (1983) “Generalized Brownian functionals and the Feynman integral”, Stoch 

Proc Appl. Vol. 16, pp55-69. 

[3] Bernido, CC & Carpio-Bernido, MV, (2014) Methods and Applications of White Noise Analysis in 

Interdisciplinary Sciences, World Scientific. 

[4] Rangaig, NA, Peñonal GFI, Convicto, VC & Aringa, HP, (2017) “Quantum dynamic propagator of 

harmonic oscillator with uniform electric field in N-multimode harmonic oscillator bath: a white 
noise approach”, Int J Math Anal. Vol. 11, No. 23, pp1103-1115. 

[5] Rangaig, NA, Pada-Dulpina, CT & Convicto, VC, (2019), “Derivation of quantum propagator for 

coupled harmonic oscillator with uniform electric field in a single oscillator environment using white 

noise functional approach”, J King Saud Univ Sci. Vol. 31, No. 2, pp252-256. 

[6] Butanas, BM, (2020), “Dynamics of coupled harmonic oscillators in an environment using white 

noise analysis”, AIP Conf Proc., Vol. 2286, No. 1, 040002. 

[7] Silva, JL & Streit, L, (2002), “Feynman integrals and white noise analysis”, World Sci Pub., River 

Edge, NJ. 

[8] Somerado, SAM & Convicto, VC (2017), Analytical Solution of Perturbed Two-Dimensional 

Harmonic Oscillator Using White Noise Path Integral Approach, Undergraduate Thesis, Mindanao 

State University, Marawi City. 

[9] Lange, OL & Raab, RE, (1991), Operator Methods in Quantum Mechanics, Oxford University Press, 
New York. 

[10] Lindao, ND (2007), Harmonic Oscillator in a Uniform Electric Field: A White noise functional 

approach, Graduate Thesis, Mindanao State University-Iligan Institute of Technology, Iligan City. 

 

AUTHORS 

 
Dr. Vernie Consigna Convicto was born in1992. He finished the BS Physics in 2012 

from Mindanao State University, Marawi City. He obtained his MS Physics degree from 

the same institution in 2017under the University Academic Scholarship grant. He 

received his PhD Physics degree in 2021 at Mindanao State University-Iligan Institute of 

Technology, Iligan City under DOST Bangon Marawi scholarship program.He is with 

the MSU-Marawi Physics Department since 2013. 

 

Ms. Sittie Ainah M. Somerado was born in 1994. She obtained her BS Physics degree 

at Mindanao State University, Marawi City in 2017. She is currently completing her MS 

Physics degree from the same institution under the DOST STRAND 2 scholarship grant. 


	Abstract
	Keywords
	Energy spectrum, Harmonic oscillator, Wavefunction, White noise, Path integral, Probability density


