
Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

45

DESIGNOFRADIX-8 BOOTHMULTIPLIER
USING KOGGESTONE ADDER FORHIGH SPEED

ARITHMETIC APPLICATIONS
Paladugu Srinivas Teja

MTech,Department of Electronics and Communication Engineering, CVSR College Of
Engineering,JNTU University, Hyderabad, A.P,India.

ABSTRACT

This paper presents the design and implementation of radix-8 booth Multiplier .The number of partial
products are reduced to n/2 in radix-4We can reduce the number of partial products even further to n/3 by
using a higher radix-8 in the multiplier encoding, thereby obtaining a simpler CSA tree .This implies less
delay and a smaller area size .Since this multiplication operation is for both signed and unsigned
numbers,cost of the system can also be reduced. The carry save adder (CSA) tree and the final adder can
speed up the operation of multiplier. Koggestone adder is a parallel prefix form carry look ahead adder
.We determine that by replacing carry save adder(CSA) and final two operand parallel prefix adder with
parallel prefix adders of koggestone algorithm reduces delay furthur more resulting in substantial increase
in speed of circuits.

KEYWORDS

Booth algorithm , Radix-8 , carry save adder , Koggestone adder , hard multiples.

1. INTRODUCTION

Multipliers play an important part in digital signal processing (DSP) systems. They are used
in implementations of recursive and transverse filters, discrete Fourier transforms, correlation,
range measurement[1]-[3].Regular advances in technology allowed to design multipliers which
are both high-speed and has regularity in layout suitable for VLSI implementation. In any
multiplication algorithm, the operation is reduced to a partial product summation. Every partial
product denotes a multiple of the multiplicand which should be added to the final result[4]. In
radix-2 algorithm,we form a series of products inbetween the multiplicand, Y, and each and
every bit of the multiplier, X, resulting in partial products[5]. After that, all the partial products
are added. We use some redundant arithmetic to get the additions as fast as possible. Usually
the speed can be increased by a CSA tree.

In the conventional CSA tree, partial product bits with many inputs residing at the same bit
position, are successively reduced to a final sum and carry pair with the help of a series
of full adders which are single bit each. At the output, we will be left with sum and carry which
has to be added by a carry-propagate adder (CPA).Where as radix-8 recoding provides gain in
time while summing up the partial products as partial products are reduced to n/3 for n bits of
multiplier and multiplicand compared to n/2 in radix-4[5].

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

46

However our multiplier is designed such that to modification in the previous adder stages. In this
way, generation of odd multiple is speeded up even further. Another interesting point in the use
of radix-8 recoding is the less number of transistors resulting in a reduced power dissipation and
area size compared to radix-4[6].We will also reduce number of partial products using a higher
radix-8 booth technique in the multiplier encoding and by replacing CSA tree with koggestone
adder ,a parallel prefix form of carry look ahead adder we obtain a even lesser delay.

2. PROPOSED RADIX-8 ENCODING TO OBTAIN PARTIAL
PRODUCTS

Fig 1. Proposed radix-8 booth multiplier

Radix-8 encoding applies the similar algorithm to radix-4, but here we take quartets of bits
instead of triplets. Each quartet is coded as a signed-digit using the table 1

1) Consider two inputs of 10 bits each, x=0010010100(148) and y=0110001010(394)

2) Append a 0 to the lsb of the y and group the bits according to radix-8

3) Denote each group as a partial product and add necessary bits to complete group of y i.e.,
if msb is 1 add 1’s and if msb is 0 add 0’s.Denote it as multiplier b

4) Append two 0’s or two 1’s to msb of the x by checking msb of x and denote it as
multiplicand

5) Denote partial products groups of b according to radix-8 encoding table given below

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

47

PP bits of b Partial Products
0 0 0 0 0a
0 0 0 1 +1a
0 0 1 0 +1a
0 0 1 1 +2a
0 1 0 0 +2a
0 1 0 1 +3a
0 1 1 0 +3a
0 1 1 1 +4a
1 0 0 0 -4a
1 0 0 1 -3a
1 0 1 0 -3a
1 0 1 1 -2a
1 1 0 0 -2a
1 1 0 1 -1a
1 1 1 0 -1a
1 1 1 1 0a

Table 1 Radix-8 encoding

[

6) Obtain partial products by applying radix-8 encoding on multiplicand a

7) Obtain 2a by shifting a to left once.4a is obtained by shifting a left twice

8) To obtain –a we need to perform 2’s complement on a

9) Obtain -2a by shifting –a once to left.-4a is obtained by shifting –a left twice

10) To generate 3a we only have to add 2a and a and similarly -3a is obtained by adding-2a
and –a.Here 3a,-3a are denoted as hard multiples.

11) pp2 is placed under pp1 after leaving three places from lsb of pp1,pp3 is placed after
leaving six places from lsb of pp1 and so on.All remaining locations are filled with 0’s.

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

48

12) Extend sign bits of all the partial products according to corresponding msb’s i.e.,extend
1’s for msb 1 and 0’s for msb 0.

Fig 2. Reduced partial product accumulation using CSA tree for 64 bit

Fig 3 CSLA-CPA

3. REDUCED PARTIAL PRODUCT ACCUMULATION USING CSA

The first set of four partial products are given to CSA1 which is of 64 bits as shown in fig 2.It
consists of two CSA stages.CSA stage 1 computes sum and carry from the partial products
pp1,pp2,pp3 each of 64 bit.The obtained sum and carry along with pp4 forms the input for CSA
stage2.This inturn produces final sum and carry of CSA1 which is given to CSLA-CPA to
produce sum1.This process continues for CSA2.Here CSA stage1 has only pp5 and pp6 as inputs
where as the the third input is the previous sum1 of CSA1.Finally CSLA-CPA of CSA2 produces
sum2. Similarly the inputs for CSA3 are sum2,pp8 and pp9 which finally results in the sum3.The

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

49

complete partial product accumulation for 64 bit pp’s is shown in fig 2.Now we are left with
sum3 and pp11 which are given as inputs to final adder to produce the result y.

4. CSA TREE

A carry-save adder calculates the sum of three or more n-bit numbers in binary as shown in fig
4..It outputs two numbers of the same length as the inputs, one is the sum bits and other is the
carry bits.

Consider the sum:12345678+87654322=100000000.

Using the arithmetic we learned as children, we go from right to left i.e., "8+2=0, carry 1",
"7+2+1=0, carry 1", "6+3+1=0, carry 1", and so on until the end of the sum. Therefore adding
two n-digit numbers has to take a time proportional to n, even if the machinery we are using
would be capable of performing many calculations simultaneously.

Using binary bits in the above case implies if we have n one-bit adders, we still have to allot a
time proportional to n to permit a possible carry propagation from one end to the other end of a
number. Till then,

1) Result of the addition is unknown.

2) Result of the addition whether it is larger or smaller than a given number also cannot be
determined.

The CSA tree however propogates the carries obtained in all the first stages immediately as inputs
to the next consecutive adders in the second stage without waiting for entire column to be
computed at a time. As a result of it next columns need not wait for carries until all stages in
previous columns are computed. Similarly carries obtained in all second stages are propogated as
inputs to next successive adders stage i.e., CSLA-CPA as shown in Fig 3.Therefore this
mechanism reduces the computation time during partial product summation.

5. CSLA-CPA

The carry select mechanism is employed in order to parallelise the operation of a 16 bit carry
propagate adder for 64 bits. a[31:16],b[31:16] are given to two 16 bit cpa’s assuming carry as 1
and 0 respectively. This is done while a single cpa is calculating carry C16 from a[15:0] and
b[15:0].Thus once the carry C16 is computed multiplexer chooses required appropriate carry to
end up with carry C32.This is the first module. Similarly next 32 bits that is a[63:32],b[63:32]
are computed parallely with the first module to obtain carry C64 as shown in fig 3.The sum is
finally calculated by performing xor operation between propagate terms Pi and the carries Ci.

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

50

Fig 4 Carry save adder

6. KOGGESTONE ADDER FOR CSA

Fig 5. Basic block diagram

6.1. Parallel prefix adder basics

Suppose that A=A(n-1)…A0 and B=B(n-1) . . . B0 denotes the numbers which is to
be added. S=S(n-1). . . S0 denotes their sum. An adder can be considered as a
three-stage circuit as shown in fig 6.

The pre processing stage computes the carry-generate bits Gi , the carry-propagate bits
Pi , according to

G(i)=ai*bi and P(i)=ai^bi

where pi and gi denote logical AND and exclusive- OR, respectively. The second stage
also known as the carry computation stage, calculates the carries Ci with the help of
generate and propagate bits Gi and Pi . The third stage which is the final adder stage
calculates the sum using the formula,

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

51

Fig 6. A block diagram of prefix adder

S(i)=p(i)^c(i)

As Ci= Gi for every bit, m a n y d i f f e r e n t algorithms have been developed for
calculating all the carries [1][3].

6.2. The prefix carry tree

The enhancement is seen in the carry computation stage shown in fig 6. Koggestone algortihm is
employed in this stage because it has log2N stages and also a fan-out of 2 at every stage[1][5].
For this an example of Kogge-Stone adder of 16 bit is shown in Fig 7.

This comes at the cost of long wires that has to be routed between stages. The adder tree also has
more PG cells which may not affect the area if the layout of the adder tree is on a regular grid.
Kogge-Stone adder is used in large word length adders because it has the minimum delay when
compared to all other adders.

6.3 Grey cell:

G=cin*pi+gi

6.4 Black cell:

P=p(i+1)*pi

G=g(i+1)+p(i+1)*gi

The above shown koggestone structure is extended for addition of 64 bit partial products
considering two partial products at a time.pp1 and pp2 are given as inputs to first koggestone
adder ka1 inorder to obtain sum1.This sum1 along with pp3 is given to second koggestone adder
ka2 to obtain sum2.This process continues until pp11 is computed to obtain final result y from
ka10 as shown in fig 8.

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

52

Fig 7. Kogge-Stone adder of 16 bit.

Fig 8. Partial product accumulation using koggestone adder of 64 bit

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

53

7. SIMULATION RESULTS

Fig. 9. Radix-8 booth multiplier using CSA adder

Fig. 10. Radix-8 booth multiplier using koggestone adder

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

54

8. PERFORMANCE COMPARISON

Logic
utilization

Used Available Utilization

No of 4
input LUTs

2820 6144 45%

No of
occupied
slices

5178 12288 42%

No of
bonded
IOBs

129 240 53%

Table 2. Device utilisation Summary for Radix-8 booth multipler using CSA.

Delay
Radix-8
booth

multiplier
using CSA

Radix-8 booth
multiplier

using Kogge
Stone adder

(ns) 53.294 ns 49.274 ns

Table 3. Delay comparison between Radix-8 booth multiplier using koggestone adder and CSA.

9. CONCLUSION

It has been performed the design and implementation of a 32 bit radix-8 booth multiplier. It has
been proved that it can be useful to apply a radix-8 architecture in high speed multipliers because
of the gain in time obtained due to reduction of partial products to n/3.The use of a radix-8
recoding is the less number of transistors resulting in a reduced power dissipation and area
size, compared to a radix-4 architecture. Delay has been furthur reduced by replacing CSA with
koggestone parallel prefix adder in the summation stage. Due to this overall multiplication time
has been reduced with our radix-8 architecture.

Emerging Trends in Electrical, Electronics & Instrumentation Engineering: An international Journal
(EEIEJ), Vol. 1, No. 1, February 2014

55

REFERENCES

[1] “Parallel-prefix structures for binary and modulo {2^n -1, 2^n, 2^n + 1} adders”, September 2011 by
Jun Chen.

[2] “Embedded Cryptographic Hardware: Methodologies and Architectures”, august 2012 by Nadia
Nedjah, Luiza de Macedo mourelle.

[3] Shivanand pariwar and Raj singh “Efficient Floating Point 32-bit single Precision Multipliers Design
using VHDL”, Pilani, Engineering and Technology 2011.

[4] J.A. Hidalgo, V. Moreno-Vergara, O. Oballe, A. Daza, M.J. Martín-Vázquez, A.Gago ,“A Radix-8
multiplier design for specific purpose”@2011.

[5] lakshmanan, m. othman, m.a.m. ali, “design and characterization of parallel prefix adders using
fpgas,” journal of computers, vol. 5, no. 10, october 2012.

[6] L.P. Rubinfield, “A Proof of the Modified Booth's Algorithm for Multiplication,” IEEE Transaction
on computers, vol.39.

Author

Paladugu Srinivasteja received the B.Tech degree in Electronics & Communication
Engineering from Netaji institute of engineering and technology (JNTU), AP, India, in
2011 and pursuing Masters in VLSI system design at Anurag Group of Institutions
formerly known CVSR College of Engineering HYD, AP, India where he is engaged in
designing of Radix-8 booth multiplier using koggestone adder for high speed arithmetic
applications.

